Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Queller, David (Ed.)The cnidarian–dinoflagellate symbiosis relies on the regulation of resident symbiont populations to maintain biomass stability; however, the relative importance of host regulatory mechanisms [cell-cycle arrest (CC), apoptosis (AP), autophagy (AU), and expulsion (EX)] during symbiosis onset and maintenance is largely unknown. Here, we inoculated a symbiont-free (aposymbiotic) model cnidarian (Exaiptasia diaphana: “Aiptasia”) with either its native symbiont Breviolum minutum or one of three non-native symbionts: Symbiodinium microadriaticum, Cladocopium goreaui, and Durusdinium trenchii. We then measured and compared host AP, host AU, symbiont EX, and symbiont cell-cycle phase for up to a year with these different symbionts and used these discrete measurements to inform comparative models of symbiont population regulation. Our models showed a general pattern, where regulation through AP and AU is reduced after onset, followed by an overshoot of the symbiont population that requires a strong regulatory response, dealt with by strong CC and increased EX. As colonization progresses into symbiosis maintenance, CC remains crucial for achieving steady-state symbiont populations, with our models estimating that CC regulates 10-fold more cells (60 to 90%) relative to the other mechanisms. Notably though, our models also revealed that D. trenchii is less tightly regulated than B. minutum, consistent with D. trenchii’s reputation as a suboptimal partner for this cnidarian. Overall, our models suggest that single regulatory mechanisms do not accurately replicate observed symbiont colonization patterns, reflecting the importance of all mechanisms working concomitantly. This ultimately sheds light on the cell biology underpinning the stability of this ecologically significant symbiosis.more » « lessFree, publicly-accessible full text available April 3, 2026
- 
            Maresca, Julia A (Ed.)Chloroflexus sp. MS-CIW-1 was isolated from a phototrophic mat in Mushroom Spring, an alkaline hot spring in Yellowstone National Park, WY, USA. We report the draft genome of 4.8 Mb consisting of 6 contigs with 3755 protein-coding genes and a GC content of 54.45%.more » « less
- 
            Abstract Background Nucleomorphs are remnants of secondary endosymbiotic events between two eukaryote cells wherein the endosymbiont has retained its eukaryotic nucleus. Nucleomorphs have evolved at least twice independently, in chlorarachniophytes and cryptophytes, yet they have converged on a remarkably similar genomic architecture, characterized by the most extreme compression and miniaturization among all known eukaryotic genomes. Previous computational studies have suggested that nucleomorph chromatin likely exhibits a number of divergent features. Results In this work, we provide the first maps of open chromatin, active transcription, and three-dimensional organization for the nucleomorph genome of the chlorarachniophyte Bigelowiella natans . We find that the B. natans nucleomorph genome exists in a highly accessible state, akin to that of ribosomal DNA in some other eukaryotes, and that it is highly transcribed over its entire length, with few signs of polymerase pausing at transcription start sites (TSSs). At the same time, most nucleomorph TSSs show very strong nucleosome positioning. Chromosome conformation (Hi-C) maps reveal that nucleomorph chromosomes interact with one other at their telomeric regions and show the relative contact frequencies between the multiple genomic compartments of distinct origin that B. natans cells contain. Conclusions We provide the first study of a nucleomorph genome using modern functional genomic tools, and derive numerous novel insights into the physical and functional organization of these unique genomes.more » « less
- 
            Alexandre, Gladys (Ed.)ABSTRACT Phototrophic biofilms in most environments experience major changes in light levels throughout a diel cycle. Phototaxis can be a useful strategy for optimizing light exposure under these conditions, but little is known about its role in cyanobacteria from thermal springs. We examined two closely related Synechococcus isolates ( Synechococcus OS-A dominates at 60 to 65°C and OS-B′ at 50 to 55°C) from outflows of Octopus Spring in Yellowstone National Park. Both isolates exhibited phototaxis and photokinesis in white light, but with differences in speed and motility bias. OS-B′ exhibited phototaxis toward UVA, blue, green, and red wavelengths, while OS-A primarily exhibited phototaxis toward red and green. OS-A also exhibited negative phototaxis under certain conditions. The repertoires of photoreceptors and signal transduction elements in both isolates were quite different from those characterized in other unicellular cyanobacteria. These differences in the photoresponses between OS-A and OS-B′ in conjunction with in situ observations indicate that phototactic strategies may be quite versatile and finely tuned to the light and local environment. IMPORTANCE Optimizing light absorption is of paramount importance to photosynthetic organisms. Some photosynthetic microbes have evolved a sophisticated process called phototaxis to move toward or away from a light source. In many hot springs in Yellowstone National Park, cyanobacteria thrive in thick, laminated biofilms or microbial mats, where small movements can result in large changes in light exposure. We quantified the light-dependent motility behaviors in isolates representing two of the most abundant and closely related cyanobacterial species from these springs. We found that they exhibited unexpected differences in their speed, directionality, and responses to different intensities or qualities of light. An examination of their genomes revealed several variations from well-studied phototaxis-related genes. Studying these recently isolated cyanobacteria reveals that diverse phototactic strategies can exist even among close relatives in the same environment. It also provides insights into the importance of phototaxis for growth and survival in microbial biofilm communities.more » « less
- 
            Primary endosymbiosis allowed the evolution of complex life on Earth. In this process, a prokaryote was engulfed and retained in the cytoplasm of another microbe, where it developed into a new organelle (mitochondria and plastids). During organelle evolution, genes from the endosymbiont are transferred to the host nuclear genome, where they must become active despite differences in the genetic nature of the “partner” organisms. Here, we show that in the amoebaPaulinella micropora, which harbors a nascent photosynthetic organelle, the “copy-paste” mechanism of retrotransposition allowed domestication of endosymbiont-derived genes in the host nuclear genome. This duplication mechanism is widespread in eukaryotes and may be a major facilitator for host–endosymbiont integration and the evolution of organelles.more » « less
- 
            Abstract Dinoflagellate chromosomes represent a unique evolutionary experiment, as they exist in a permanently condensed, liquid crystalline state; are not packaged by histones; and contain genes organized into tandem gene arrays, with minimal transcriptional regulation. We analyze the three-dimensional genome ofBreviolum minutum, and find large topological domains (dinoflagellate topologically associating domains, which we term ‘dinoTADs’) without chromatin loops, which are demarcated by convergent gene array boundaries. Transcriptional inhibition disrupts dinoTADs, implicating transcription-induced supercoiling as the primary topological force in dinoflagellates.more » « less
- 
            null (Ed.)Abstract In cnidarian-Symbiodiniaceae symbioses, algal endosymbiont population control within the host is needed to sustain a symbiotic relationship. However, the molecular mechanisms that underlie such population control are unclear. Here we show that a cnidarian host uses nitrogen limitation as a primary mechanism to control endosymbiont populations. Nitrogen acquisition and assimilation transcripts become elevated in symbiotic Breviolum minutum algae as they reach high-densities within the sea anemone host Exaiptasia pallida . These same transcripts increase in free-living algae deprived of nitrogen. Symbiotic algae also have an elevated carbon-to-nitrogen ratio and shift metabolism towards scavenging nitrogen from purines relative to free-living algae. Exaiptasia glutamine synthetase and glutamate synthase transcripts concomitantly increase with the algal endosymbiont population, suggesting an increased ability of the host to assimilate ammonium. These results suggest algal growth and replication in hospite is controlled by access to nitrogen, which becomes limiting for the algae as their population within the host increases.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
